(IJRST) 2022, Vol. No. 12, Issue No. I, Jan-Mar

Heterostructured Ga₂O₃-Activated Bi₂O₃ Sensors for Chlorine Monitoring¹

* Y. B. Patil, D. R. Patil, ** Snehal D. Patil, Harshal A. Nikam, Y. C. Sharma

*Bulk and Nanomaterials Research Laboratory, Dept. of Physics, R. L. College, Parola, Dist. Jalgaon, MHS India

Corresponding Author: prof_drpatil@yahoo.in

**Dept. of Physics, Vivekananda Global University, Jagatpura, Jaipur, Rajasthan, India

DOI:10.37648/ijrst.v12i01.001

Received: 10 November 2021; Accepted: 06 January 2022; Published: 25 January 2022

ABSTRACT

The nanocrystalline Bi₂O₃ powder was synthesized by ultrasonicated microwave irradiation by employing centrifugation technique at all normal conditions. Fabrication of thick films of pure Bi₂O₃ powder was made by screen printing and firing at 400°C for 30 min. Surface activations of the films involved the dipping of pure films into 0.01M aqueous solution of Gallium Nitrate for different intervals of time. The morphologies, surface topographies, constituents of elements present in the synthesized materials and crystallographic structures of the pure and surface activated films have been investigated by XRD, FE-SEM, E-DAX, etc. It has been investigated that, the Ga₂O₃ activated Bi₂O₃ (30 min) sample exhibits crucial response to 20 ppm Cl₂ gas at 250°C. Electrical and gas monitoring performance of thick films of pure and activated Bi₂O₃ have been studied and discussed.

Keywords: Heterostructure, Nanocrystalline Bi2O3, Ga2O3, Thick films, Cl2 Sensor

1. Introduction

The research and development in the gas sensing field have emerges the new challenges for the researchers, scientists and industrialists. Hence, there is a great scope of innovations for this material to fabricate gas sensors [1]. Metal oxides such as Ga₂O₃, ZnO, SnO₂, WO₃, CuO, ZrO₂, etc. have attracted great deal of interest as their electrical and optical characteristics get changes on the exposure of reducing or oxidizing gases [2-8]. Metal oxide thick films offer good possibilities in tailoring the gas response and selective nature of the gas sensors, by changing the various parameters. Gallium oxide (Ga2O3) is a versatile wide band gap semiconducting metal oxide with wide applications such as transparent conducting electrodes, phosphors, dielectric gates, gas sensors, etc. [9]. Ga2O3 is very promising materials in oxygen sensing, but at high temperatures from 600-1000°C which is not desirable [10-11].

Water disinfection processes, paper and pulp industries, drinking and wastewater treatment plants, bleaching processes, etc. use chlorine widely. Long and continuous exposure to chlorine can be detrimental for humans [12-14]. Chlorine has excellent bleaching ability, but once it is discharged in aquatic systems, it interacts with other industrial effluents to produce a host of chlorinated organic such as dioxin. Dioxin persists in the environment for prolonged periods and has a tendency to bio-accumulate in the food chains, which elicit toxic effects to humans, viz. skin infection, psychological disorders and even liver damage. Gas chromatography, chemical detecting tubes and electrochemical sensing techniques are available for the detection of chlorine gas in the environment, but they are inconvenient techniques to monitor chlorine gas at low temperature [15-18]. It is therefore, necessary to monitor chlorine gas sensors.

2. Materials and Methods

2.1 Synthesis of Nanocrystalline Bi₂O₃

Nanocrystalline Bi_2O_3 powder was synthesized by ultrasonicated microwave irradiation by employing centrifugation technique at normal conditions. For the

¹ How to cite the article:

Patil Y B, Patil D R, Patil S D, Nikam H A, Sharma Y C, Heterostructured Ga₂O₃-Activated Bi₂O₃ Sensors for Chlorine Monitoring, IJRST, Jan-Mar 2022, Vol 12, Issue 1, 1-6, DOI: http://doi.org/10.37648/ijrst.v12i01.001

(IJRST) 2022, Vol. No. 12, Issue No. I, Jan-Mar

synthesis, 0.05 M aqueous solution of bismuth nitrate pentahydrate was prepared and ammonium hydroxide was added drop wise slowly with the constant stirring on hot plate, till ppt forms and pH reaches at 11. The ppt was washed 5 times with distilled water. The washed ppt was allowed to ultrasonication for 30 minutes and microwave irradiation and centrifugation. The collected ppt was calcined at 400°C for 2 hrs.

2.2 Thick Film Fabrication

Thixotropic paste of the synthesized powder was formulated by mixing the nanostructured powder of pure Bi_2O_3 with a solution of ethyl cellulose (a temporary binder) in a mixture of organic solvents such as butyl cellulose, butyl carbitol acetate and turpineol. The ratio of inorganic to organic part was kept as 80:20 in formulating the thixotropic pastes. The thixotropic pastes were screen printed on the glass substrates in the desired patterns. Films prepared were dried at 80°C under an IR lamp, and fired at 400°C for 30 min in air ambient.

2.3 Surface Activation of Thick Films

Surface activation of thick films of pure Bi_2O_3 was achieved by dipping them into a 0.01 M aqueous solution of gallium nitrate for different intervals of time viz. 5 min, 15 min, 30 min and 45 min and dried at 80°C under an IR lamp, and fired in muffle furnace at 400°C for 30 min in air ambient. The particles of gallium nitrate dispersed on the film surface would be transformed to gallium oxide (Ga₂O₃) during firing process. Thus, the sensor elements with different mass % of Ga₂O₃ incorporated in to thick films of pure Bi_2O_3 were obtained. Silver contacts were made by vacuum evaporation for electrical measurements and the chlorine gas sensing performance.

3. Results and Discussions

3.1 Material Characterizations

3.1.1 Structural Properties (X-Ray Diffraction Studies)

3.1.2 Energy Dispersive Analysis by X-Rays (E-DAX)

The mass % of Bi and O in each samples (Table 1) are not as per the stoichiometric proportion and the material is having semiconducting nature. It is cleared from Table 1 that the mass % of Ga_2O_3 (Bi_2O_3) goes on increasing (decreasing) with activation time.

3.1.3 Microstructural Analysis (SEM)

Figs. 2 (a-d) depict the microstructures of Ga_2O_3 activated Bi_2O_3 thick films for various activation times, viz. 5 min, 15 min, 30 min and 45 min. It was observed that, the Ga_2O_3 particles are distributed on the surface of Bi_2O_3 thick films. The figures depict the physisorption of

e-ISSN: 2249-0604, p-ISSN: 2454-180X

Fig. 1: XRD pattern of pure Bi₂O₃ powder

X ray diffraction studies of pure Bi₂O₃ powder was carried out using BRUKER AXSD8 (Germany) advance model X ray diffraction with CuK α_1 (λ =1.54056 Å) radiation in the 2θ range 20° - 80° . The scanning speed of the specimen was maintained 0.5° / min. Fig. 1 depicts the XRD pattern of pure Bi₂O₃ powder. The average crystallite size for this sample was determined using Scherer's formula and was observed to be 22.6 nm. Observed peaks match well with JCPDS data of Bi₂O₃. It was also observed from XRD analysis that, as very minute quantity of activator Ga₂O₃ was dispersed on the surface of the films and few incorporated inside the bulk of the films of Bi₂O₃, hence, it doesn't appear in the XRD patterns of the activated films. Almost, all the XRD patterns of the activated films are nearly same. So, these XRD patterns are not given here.

Table 1: Elemental analysis of pure and Ga_2O_3 activated Bi_2O_3 thick films

Activation Time (min)					
0 (Pure)	0	5	15	30	45
(Expecte	(Pure)				
d)	(Obser				
	ved)				
89.70	91.34	72.51	68.13	59.45	50.57
10.30	08.66	02.71	01.41	03.94	07.00
100	100	66.69	59.05	50.77	42.96
0.00	0.00	24.78	30.46	36.62	42.43
0.00	0.00	33.31	40.95	49.23	57.04
100	100	100	100	100	100
	0 (Pure) (Expecte d) 89.70 10.30 100 0.00 0.00 100	O (Pure) O 0 (Pure) (Pure) (D) (Obser d) (Obser ved) 91.34 10.30 08.66 100 100 0.000 0.000 0.000 0.000 100 100	O (Pure) (Expecte d) O (Pure) (Obser ved) 5 89.70 91.34 72.51 10.30 08.66 02.71 100 100 66.69 0.000 0.000 33.31 100 100 100	0 (Pure) (Expecte d) 0 (Pure) (Obser ved) 5 (Pure) (Obser ved) 15 89.70 91.34 72.51 68.13 10.30 08.66 02.71 01.41 100 100 66.69 59.05 0.00 0.00 24.78 30.46 0.00 0.00 33.31 40.95 100 100 100 100	O (Pure) (Expecte d) O (Pure) (Obser ved) 5 15 30 89.70 91.34 72.51 68.13 59.45 10.30 08.66 02.71 01.41 03.94 100 100 66.69 59.05 50.77 0.000 0.000 24.78 30.46 36.62 0.000 100 100 100 100 100 100 100 100 100

 Ga_2O_3 grains on the Bi_2O_3 grains of the film surface, as islands.

INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY

(IJRST) 2022, Vol. No. 12, Issue No. I, Jan-Mar

e-ISSN: 2249-0604, p-ISSN: 2454-180X

 B3 Inm
 71 2m (B1 4mm)

 B3 Inm
 72 2m (B1 4mm)

 B0 7mm
 78 4mm

 Stars
 77 4mm

 Stars
 74 3mm

 Stars
 74 3mm

 Stars
 74 3mm

(b) 15 min

(c) 30 min

Fig. 2: Micrographs of Ga₂O₃ activated Bi₂O₃ films for (a) 5 min, (b) 15 min, (c) 30 min and (d) 45 min

The average size of Ga_2O_3 grains on film surface is in the range from 30 nm to 100 nm. The films consist of voids and continuous distribution of the Ga_2O_3 grains on the film surface. Thick film of Ga_2O_3 activated Bi_2O_3 (30 min) was observed to be most sensitive to 20 ppm Cl₂ at 250°C. The high performance of this film in Cl₂ gas sensing may be attributed to the fabrication of nanorods on the film surface and intergrain boundaries of $Ga_2O_3 - Bi_2O_3$ developed on the film surface, which modifies the energy levels producing the large number of surface active sites. So, the large surface active sites are made available to reach the gas molecules to the intergrain boundaries, enhancing Cl₂ sensing.

- 3.2 I-V Characteristics of Sensor
- 3.2.1 I-V Characteristics

Fig. 3: I-V characteristics of Ga₂O₃ activated Bi₂O₃ thick films

The symmetrical I-V characteristics of pure and Ga_2O_3 activated Bi_2O_3 thick films in Fig. 3 confirms the ohmic natures of materials as well as silver contacts made on the films. The material is therefore said to have the resistive properties.

3.2.2 Electrical Conductivity

Bi₂O₃ films

Fig. 4 depicts the variation of logarithm of electrical conductivity with the reciprocal of operating temperature for Ga_2O_3 activated Bi_2O_3 thick films. The conductivities of all samples increased with increase in operating temperature (above 200°C), which could be attributed to negative temperature coefficient of resistance and the semiconducting nature of the Ga_2O_3 activated Bi_2O_3 thick films. Below 200°C temperature, the conductivities nearly remain same, exhibiting the resistive nature of the materials.

(IJRST) 2022, Vol. No. 12, Issue No. I, Jan-Mar

3.3 Gas Sensing Performance

3.3.1 Temperature Based Gas Sensing Performance of Pure Bi2O3

Fig. 5: Variation of H₂S and Cl₂ response of pure Bi₂O₃ thick film with operating temperature (°C)

The gas response of pure Bi_2O_3 thick films to 100 ppm H_2S and Cl_2 gases as a function of operating temperature is indicated in Fig. 5. It is observed from Fig. 5 that, the pure Bi_2O_3 thick film is almost insensitive to Cl_2 at all temperature range i. e. from room temperature to 400°C. The film responds (though less) to H_2S at room temperature (32°C) as well as at 50°C.

3.3.2. Gaseous Species Based Performance of Pure Bi2O3

Fig. 6: Selectivity of pure Bi₂O₃ to NH₃ and H₂S gases It is cleared from Fig. 6 that, pure Bi₂O₃ thick film sensor showed selective response to 100 ppm NH₃ gas at room temperature (32°C), among the various gases, viz. O₂, H₂, CO₂, LPG, ethanol, capronaldehyde (CA) and Cl₂. Poor selectivity and less response are the major drawbacks of pure Bi₂O₃ thick films in gas sensing applications.

3.3.3 Temperature Based Gas Sensing Performance of Activated Bi2O3

e-ISSN: 2249-0604, p-ISSN: 2454-180X

Fig. 7: Variation of Cl₂ response with operating temperature of Ga₂O₃ activated Bi₂O₃ thick films

Fig. 7 depicts the variation of Cl_2 gas response of surface activated Bi_2O_3 thick films by Ga_2O_3 to 20 ppm Cl_2 as a function of operating temperature. The surface activated Bi_2O_3 thick film (30 min) was observed to be most sensitive to Cl_2 at 250°C. The Cl_2 response increases with operating temperature, reaches maximum at 250°C and decreases with further increase in operating temperature.

3.3.4 Chlorine Concentration Based Performance of Activated Bi_2O_3

The variation of Cl_2 response of activated films as a function of Cl_2 gas concentration at 250°C temperature has been depicted in Fig. 8. Among all, 30 min activated film was observed to be most sensitive to 20 ppm Cl_2 at 250°C. The responses were observed to increase linearly with increasing gas concentration up to 20 ppm at 250°C. The rate of increase in response was relatively larger up to 20 ppm and saturated beyond 20 ppm. Thus, the active region of the sensor would be from 4 ppm up to 20 ppm. At 20 ppm gas concentrations, the unimolecular layer of gas molecules would be expected to form on the surface of the sensor which would interact with the surface more actively giving proportional response. There would be the formation of multilayer of gas molecules on the sensor

(IJRST) 2022, Vol. No. 12, Issue No. I, Jan-Mar

surface at the higher gas concentrations resulting in saturation in response beyond 20 ppm gas. For proper functioning, the sensor should work in the active region.

3.3.5 Surface Activation Based Performance

The response of activated films to Cl_2 as a function of the activation time is shown in Fig. 9. The film activated for 30 min was observed to be the most sensitive to Cl_2 among all other tested gases. It showed the highest response of the order of 4.8 to 30 min activated sample to 20 ppm Cl_2 gas at 250°C and lower to the rest of activated samples of different activation time interval. The crucial response of this sensor to Cl_2 gas may be attributed to the fabrication of nanorods on the film surface and heterostructured intergrain boundaries of Ga_2O_3 - Bi_2O_3 developed on the film surface, which modifies the energy levels producing the large number of surface active sites.

Fig. 9: Variation of Cl₂ response with activation time

3.3.6 Gaseous Species Based Performance of Activated Bi2O3

Fig. 10: Selectivity of Ga₂O₃ activated Bi₂O₃ thick films to Cl₂ gas among different gases

Fig. 10 depicts the selectivity of Ga_2O_3 activated Bi_2O_3 thick film sensors to 20 ppm Cl_2 at 250°C temperature. The Ga_2O_3 activated Bi_2O_3 (30 min) sensor showed high selectivity to Cl_2 and could distinguish the Cl_2 among all the gases such as: O_2 , H_2 , CO_2 , LPG, ethanol, NH₃ and H₂S.

e-ISSN: 2249-0604, p-ISSN: 2454-180X

3.3.7 Response – Recovery Performance of Activated Bi2O3

The response and recovery of the Ga₂O₃ activated Bi₂O₃ thick film sensor is represented in Fig. 11. The response was quick (~ 8 s) to 20 ppm Cl₂, while the recovery was fast (~10 s). The negligible quantity of the surface reaction product and its high volatility explains its quick response to Cl₂ and fast recovery to its initial chemical status.

Fig. 11: Response and recovery of Ga₂O₃ activated Bi₂O₃ sensor

4. Chlorine Gas Sensing Mechanism of Activated Bi₂O₃

Fig. 12: Chlorine sensing mechanism

Gas sensing phenomenon is the surface phenomenon. So, the exposure of gas on the surface of the sensor can lead the change of surface resistance, instead of change of bulk resistance [19]. Upon exposure of chlorine gas, the interaction of chlorine molecules with surface of Ga_2O_3 activated Bi_2O_3 thick film causes the transfer of electrons between semiconducting surface and adsorbates. Adsorption of atmospheric oxygen molecules decreases the electronic conductivity of the material of the film, as described in (1) [20-23].

(IJRST) 2022, Vol. No. 12, Issue No. I, Jan-Mar

$$O_{2 \text{ (air)}} + 2e^{-} \rightarrow 2O^{-}(\text{film surface})$$

The mass % of Bi and O in each sample are not as per the stoichiometric proportion and all samples were observed to be the excess in oxygen and deficient in bismuth. However, 15 min activated sample, alone, was observed to be oxygen deficient, as indicated in Table 1. Therefore, maximum numbers of free electrons are available in this film. This enhances the n-typeness of the film. Upon exposure, chlorine molecules replace the adsorbed oxygen, donating free electrons to the material of the film (Fig. 12). The reaction in (2) is responsible for chlorine sensing [16].

$$\operatorname{Cl}_{2(\operatorname{gas})} + \operatorname{O}_{2(\operatorname{ad})}^{2^{-}} \rightarrow 2 \operatorname{Cl}_{(\operatorname{ad})} + \operatorname{O}_{2(\operatorname{gas})} + 2 \operatorname{e}_{(\operatorname{cond},\operatorname{band})} \dots 2$$

From Fig. 12, it is cleared that, each adsorbed oxygen molecules captured two electrons, and each adsorbed oxygen molecules are replaced by Cl_2 molecules capturing only one electron and making free electrons as shown in (2). Thus the numbers of free electrons in the conduction band of the material increases, enhancing the chlorine response at high temperature (250°C).

5. Conclusions

From the results obtained, following conclusions can be made for Cl_2 sensing performance of the sensor.

- 1. Pure bismuth oxide was almost insensitive to Cl₂ traces at all temperature range.
- Surface activation by dipping process is one of the most suitable methods of modifying the surface of thick films.
- Ga₂O₃ activated Bi₂O₃ (30 min) thick film has good sensitivity and selectivity to 20 ppm Cl₂ at 250°C.
- Ga₂O₃ as an additive in Bi₂O₃ is outstanding in promoting the Cl₂ sensing.
- 5. The sensor showed very rapid response and recovery to Cl_2 gas.

References:

- Yongxiang Li, Adrian Trinchi, W. Wlodaski, K. Galatsis and K. Kalantar-zadeh, "Investigation of the oxygen sensing performance of Ga₂O₃ thin films with different dopants", Sens. Actuators B vol. 93, pp. 431-434, 2003.
- H-J Lin, J. P. Baltrus, H. Gao, Y. Ding, C-Y Nam, P. Ohodnicki, et al., "perovskite nanoparticle sensitized Ga₂O₃ nanorod arrays for CO detection at high temperature", ACS Appl. Mater. Interfaces vol. 8, pp. 8880-8887. 2016.
- Nguyen Le Hung, "Synthesis and gas sensing properties of ZnO nanostructures", J. Korean Phys. Soc. vol. 57, pp. 1784-1788, 2010.

e-ISSN: 2249-0604, p-ISSN: 2454-180X

- J. Yu, Z. A. Tang, G. Z. Yan, P. C H. Chan and Z. X. Huang, "An experimental study on micro gas sensor with strip shape tin oxide thin film", Sens. Actuators B vol. 139, pp. 346-352, 2009.
- T. Siciliano, A. Tepore, G. Micocci, A. Serra, D. Manno and E. Filippo, "WO₃ gas sensors prepared by thermal oxidation of tungsten", Sens. Actuators B vol. 133, pp. 321-326, 2008.
- Z. Ling, C. Leach and R. Freer, "A time resolved study of the response of a WO₃ gas sensor to NO₂ using AC impedance spectroscopy", Sens. Actuators B vol. 87, pp. 215-221, 2002.
- Won Jae Moon, Ji Haeng Yu and Gyeong Man Choi, "The CO and H₂ gas selectivity of CuO doped SnO₂-ZnO composite gas sensor", Sens. Actuators B vol. 87, pp. 464-470, 2002.
- Jing Wang, Mei-Ying Su, Jin-Qing and Ling-Quian Chang, "Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors", Sens. Actuators B vol. 139, pp. 418-424, 2009.
- Zhifu Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani and Y. Li, "O₂ and CO sensing of Ga₂O₃ multiple nanowire gas sensors", Sens. Actuators B vol. 129, pp. 666-670, 2008.
- Long-Tsong Ju and SHR-Liang Ju, "Deposition of Ga₂O₃ thin film for high temperature oxygen sensing applications", J. Ovonic Res. vol. 8, pp.73-79, 2012.
- C. Baban, Y. Toyoda and M. Ogita, "Oxygen sensor based on Ga₂O₃ films operating at high temperature", J. Optoelec. Adv. Mater. vol. 7, pp. 891-896, 2005.
- D. R. Patil, "Studies on ZnO based gas sensors", Ph. D. Thesis, KBC North Maharashtra University, Jalgaon, Chapter 1, 2007, pp. 01-55.
- D. H. Dawson and D. E. Williams, "Gas response resistors: Surface interaction of chlorine with semiconducting oxide", J. Mater. Chem. vol. 6, pp. 409-414, 1996.
- 14. H. W. Gehm, "Industrial waste water control", (C. F. Ed.) Gurnham, Academic press, New York, 1965, pp. 357-373.
- D. R. Patil, D. D. Kale, S. R. Patil and K. M. Garadkar, "Novel method for synthesis of ZnO nanorods and its applications as highly selective chlorine sensors working at low temperature", Sensor Letters vol. 7, pp.1057-1064, 2009.
- D. R. Patil and L. A. Patil, "Room temperature chlorine gas sensing using surface modified ZnO thick film resistors", Sens. Actuators B vol. 123, pp. 546-553, 2007.
- Snehal D. Patil, Y. B. Patil, D. R. Patil and Shahera S. Patel, "Particle size dependent gas sensing performance of ZnO Nanorods based thick film resistors", Intern. J. on Rec. Innov. Trends in Compu. Commun. vol. 3, pp. 5063-5068, 2015.
- R. R. Attarde, G. B. Shelke, Y. B. Patil, Snehal D. Patil, D. R. Patil and Shahera S. Patel, "Nanostructured manganese oxide thick film resistors as Ethanol gas sensors", J. Res. Dev. vol. 5, pp. 01-07, 2015.
- 19. L. A. Patil and D. R. Patil, "Heterocontact type CuO-modified SnO_2 sensor for the detection of a ppm level H₂S gas at room temperature", Sens. Actuators B vol. 120, pp. 316-323, 2006.
- D. R. Patil, "Studies on ZnO based gas sensors", Ph. D. Thesis, KBC North Maharashtra University Jalgaon, Chapter 6, 2007, pp. 155 – 181.
- 21. J. Mizsei, "How can sensitive and selective semiconductor gas sensors be made?", Sens. Actuators B vol. 23, pp. 173-176, 1995.
- K. M. Garadkar, B. S. Shirke, Y. B. Patil and D. R. Patil, "Nanostructured ZrO₂ thick film resistors as H₂- gas sensors operable at room temperature", Sens. Transducers vol. 110, pp. 17-25, 2009.
- Shelke G. B., Patil D. R., Patil Y. B. and Attarde R. R., "SrO₂ modified nanostructured SnO₂ thick films as H₂S gas sensors operable at room temperature", Intern. J. Curr. Res. vol. 8, pp. 32417 – 32420, 2016.